نگاشت های حافظ ضرب صفر روی جبرهای باناخ

thesis
abstract

هدف اول این پایان نامه دسته بندی نگاشت های حافظ ضرب صفر روی جبر های باناخ می باشد. فرض می کنیم ‎ a‎ یک جبر باناخ نیم ساده دارای ستون ناصفر، ‎b‎ یک جبر باناخ یکدار و ‎t‎: ‎ a ? b‎ یک نگاشت خطی دوسوئی حافظ ضرب صفر باشد. می دانیم هر همریختی و یا حاصل ضرب هر همریختی در یک عنصر مرکزی وارون پذیر ضرب صفر را حفظ می کند. سوالی که مطرح می شود این است که آیا هر نگاشت حافظ ضرب صفر نیز به این صورت نوشته می شود ؟ یا می توان شرایطی را در نظر گرفت که چنین حکمی برقرار باشد ؟ در این پایان نامه به بررسی و یافتن این شرایط می پردازیم. هدف دوم این است که با فرض این که ‎ a‎ و b‎ دو جبر باناخ نیم ساده، ?: ‎ a ? b یک عملگر خطی دوسوئی یکدار حافظ وارون پذیری و ‎soc( a)‎ یک ایده آل اساسی از ‎ a‎ باشد ثابت کنیم ? یک یکریختی جردن است.

similar resources

نگاشت های جمعی حافظ ضرب جردن صفر روی جبرهای عملگرها

اگر ? نگاشت جمعی پوشا بین دو جبر عملگری باشد که در رابطه خاصی صدق می کند تحت شرایط خاص نشان می دهیم ? یک همومورفیسم جردن ضرب شده با یک عضو مرکزی است. در حالت خاص اگر k و h دو فضای هیلبرت با بعد نامتناهی(حقیقی یا مختلط) باشند(a=b(hو(b=b(kآنگاه عدد ثابت غیر صفر c و نگاشت وارونپذیر خطی یا مزدوج خطی u از h به k وجود دارند که در شرط خاصی صدق می کند.

15 صفحه اول

نگاشتهای حافظ حاصلضرب صفر روی جبرهای باناخ

یک نگاشت خطی t از یک جبر باناخ َ به جبر باناخ إ حافظ حاصلضرب صفر است هرگاه برای هر a,b در a بافرض ab=0 داشته باشیم t(a)t(b)=0 . هدف این پایان نامه بررسی این پرسش است که آیا هر نگاشت پوشا و پیوسته حافظ حاصلضرب صفر یک همریختی وزن دار است؟ نشان میدهیم که پاسخ این سئوال در مورد کلاس بزرگی از جبرهای باناخ شامل جبرهای گروهی مثبت است. روش ما شامل در نظر گرفتن یک نگاشت دو خطی ? از a×a به توی x است(برا...

نگاشت های حافظ ضرب صفر روی [c^1[0,1

فرض کنید c^1[0,1]‎ جبر توابع مشتق پذیر پیوسته از فاصله واحد ‎[0,1] ‎ به توی ‎ c‎ باشد. هدف اصلی این پایان نامه مشخصه سازی نگاشت های دو خطی پیوسته از c^1[0,1]× c^1[0,1]‎ به توی فضای باناخ x ‎ مانند ? است مشروط به این که اگر ‎ f,g?c^1[0,1] ‎ که ‎ fg=0 ‎ آنگاه ? (f,g)=0‎. عملگر خطی ‎ tاز جبر باناخ a ‎ به توی جبر باناخ b‎ را حافظ ضرب صفر گوییم در صورتی که اگر ‎ a,b? a ‎ و ‎ ab=0 ‎ آنگاه ‎ta....

15 صفحه اول

نگاشت‌های نگهدارنده جفت‌های عملگری باناخ روی جبرهای عملگری

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

full text

نگاشت های خطی حافظ طیف دوسویی روی جبرهای باناخ ماتریسی

در این پایان نامه ثابت شده که یک نگاشت خطی حافظ طیف دو سویی روی دو جبر باناخ ماتریسی، یک همریختی جردن است.

نگاشت های تقریبا ضربی حافظ طیف روی جبرهای باناخ

در این پایان نامه مفهوم تقریبا ضربی بودن نگاشت و پیوستگی خودکار درحالتی که تقریبا ضربی است را بررسی می کنیم. همچنین چند نسخه تقریبی از قضیه ی گلیسون -کاهان -زلازکو و نگاشت های تقریبا ضربی که نزدیک ضربی هستند را بیان و مطالعه می کنیم. همچنین به بررسی جبرهایی می پردازیم که دارای این ویژگی هستند که $amnm$-جبر‎‎ نامیده می شوند.‏در این پایان نامه ‏بعضی از ویژگی های شبه طیف‏،$amnm$-جفت‎‎‏، ...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023